Experimental Study on Warpage Phenomenon of Wax Parts Manufactured by Fused Filament Fabrication

Author:

Mukhtarkhanov Muslim1,Shehab Essam1ORCID,Ali Md. Hazrat1

Affiliation:

1. Department of Mechanical and Aerospace Engineering, SEDS, Nazarbayev University, Astana 010000, Kazakhstan

Abstract

Warpage is one of the prominent issues in Fused Filament Fabrication. The cause of this is the rapid cooling of the polymer during extrusion. The residual thermal stresses accumulated within the print part result in a shape distortion and subsequent detachment of the object from the print bed. In this study, both experimental and numerical approaches were used to identify the stresses due to thermal shrinking that occurs in soft polymers such as wax. A temperature sweep test was performed using a rotational rheometer to measure the magnitude of axial forces that are generated due to the thermal shrinking of a thin layer of 3D printable wax. The thermal stresses responsible for warpage were computed analytically and using the FEA. It was found that due to thermal processes, the stress magnitude can reach a value of 1.17 MPa. This value is enough to cause the plastic deformation in the wax part having a thin elongated shape. In addition, Taguchi’s robust design has identified two major FFF parameters that impact the warpage in amorphous soft polymers. They are the printing speed and the print bed temperature. To achieve a low level of warpage, it is important to make sure that the layer deposition occurs at medium speeds and the print bed temperature is moderately high according to the findings of this study.

Funder

Ministry of Education and Science (MES), Republic of Kazakhstan

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3