Recent Progress in Covalent Organic Frameworks for Cathode Materials

Author:

Wang Chi1ORCID,Tian Yuchao1,Chen Wuhong1,Lin Xiaochun1,Zou Jizhao2,Fu Dongju1,Yu Xiao1,Qiu Ruling1,Qiu Junwei1,Zeng Shaozhong1

Affiliation:

1. College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China

2. Shenzhen Key Laboratory of Special Functional Materials & Shenzhen Engineering Laboratory for Advance Technology of Ceramics, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China

Abstract

Covalent organic frameworks (COFs) are constructed from small organic molecules through reversible covalent bonds, and are therefore considered a special type of polymer. Small organic molecules are divided into nodes and connectors based on their roles in the COF’s structure. The connector generally forms reversible covalent bonds with the node through two reactive end groups. The adjustment of the length of the connector facilitates the adjustment of pore size. Due to the diversity of organic small molecules and reversible covalent bonds, COFs have formed a large family since their synthesis in 2005. Among them, a type of COF containing redox active groups such as –C=O–, –C=N–, and –N=N– has received widespread attention in the field of energy storage. The ordered crystal structure of COFs ensures the ordered arrangement and consistent size of pores, which is conducive to the formation of unobstructed ion channels, giving these COFs a high-rate performance and a long cycle life. The voltage and specific capacity jointly determine the energy density of cathode materials. For the COFs’ cathode materials, the voltage plateau of their active sites’ VS metallic lithium is mostly between 2 and 3 V, which has great room for improvement. However, there is currently no feasible strategy for this. Therefore, previous studies mainly improved the theoretical specific capacity of the COFs’ cathode materials by increasing the number of active sites. We have summarized the progress in the research on these types of COFs in recent years and found that the redox active functional groups of these COFs can be divided into six subcategories. According to the different active functional groups, these COFs are also divided into six subcategories. Here, we summarize the structure, synthesis unit, specific surface area, specific capacity, and voltage range of these cathode COFs.

Funder

National Natural Science Foundation of China

Shenzhen Stable Supporting Program

University Engineering Research Center of Crystal Growth and Applications of Guangdong Province

Innovation Project of Education Department of Guangdong Province

Shenzhen Science and Technology Program

Science and Technology Program of Guangzhou

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3