Synthesis of Poly-Lactic Acid by Ring Open Polymerization from Beer Spent Grain for Drug Delivery

Author:

Vakati Snehal R.1,Vanderlaan Gary2,Gacura Matthew D.2,Ji Xiaoxu1,Chen Longyan1ORCID,Piovesan Davide1ORCID

Affiliation:

1. Department of Bioengineering and Biomedical Engineering, Gannon University, Erie, PA 16541, USA

2. Department of Biology, Gannon University, Erie, PA 16541, USA

Abstract

Poly-lactic acid (PLA) is a synthetic polymer that has gained popularity as a scaffold due to well-established manufacturing processes, predictable biomaterial properties, and sustained therapeutic release rates. However, its drawbacks include weak mechanical parameters and reduced medicinal delivery efficacy after PLA degradation. The development of synthetic polymers that can release antibiotics and other medicines remains a top research priority. This study proposes a novel approach to produce PLA by converting Brewer’s spent grain (BSG) into lactic acid by bacterial fermentation followed by lactide ring polymerization with a metal catalyst. The elution properties of the PLA polymer are evaluated using modified Kirby–Bauer assays involving the antimicrobial chemotherapeutical, trimethoprim (TMP). Molded PLA polymer disks are impregnated with a known killing concentration of TMP, and the PLA is evaluated as a drug vehicle against TMP-sensitive Escherichia coli. This approach provides a practical means of assessing the polymer’s ability to release antimicrobials, which could be beneficial in exploring new drug-eluting synthetic polymer strategies. Overall, this study highlights the potential of using BSG waste materials to produce valuable biomaterials of medical value with the promise of expanded versatility of synthetic PLA polymers in the field of drug-impregnated tissue grafts.

Funder

Manufacturing PA Innovation Program

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3