The Role of Reduced Graphene Oxide in Enhancing the Mechanical and Thermal Properties of a Rubber Cover Joint

Author:

Zhang Hongyu123,Li Junxia123,Fan Wenrui123

Affiliation:

1. College of Mechanical and Vehicle Engineering, Taiyuan University of Technology, Taiyuan 030024, China

2. Shanxi Province Engineer Technology Research Center for Mine Fluid Control, Taiyuan 030024, China

3. National-Local Joint Engineering Laboratory of Mining Fluid Control, Taiyuan 030024, China

Abstract

The development of high-performance rubber composites has always been a research hotspot in the field of conveyor belt manufacturing. In this work, a rubber cover joint composite made of reduced graphene oxide (rGO) was prepared using latex mixing and mechanical blending methods, with a steel wire rope conveyor belt as the research object, and the influence of the rGO content on the properties of the rubber composite is discussed. The structure and morphology characterization of the rGO/NR rubber show that the addition of rGO does not change its crystal structure, and 1.2 phr rGO is uniformly dispersed throughout the rubber composite. As more rGO is added, the mechanical properties of the rGO rubber cover joint first improve and then worsen. With the addition of 1.2 phr, the cross-linking density increases by 80.6%, the tensile strength of the rubber composites increases by 49.7%, the elongation at break increases by 23.6%, and the adhesion strength increases by 12.4%. The tensile strength of the rGO rubber cover joint can still maintain 72.5% of its pre-thermal aging value. The wear resistance and thermal conductivity increase as more phr is added. When 3.0 phr is added, the wear resistance of the rubber composites increases by 32.9%, the thermal conductivity increases by 118.8%, and the temperature difference at the completion of vulcanization decreases from 4.5 °C to 1.8 °C. The results show that when 1.2 phr of rGO is added, the rubber conveyor belt joint obtains the best comprehensive performance. These enhanced comprehensive properties allow for the practical application of rGO nanomaterials to conveyor belt rubber.

Funder

Shanxi Key R&D Plan

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3