Numerical Analysis on the Dynamic Response of PVC Foam/Polyurea Composite Sandwich Panels under the Close Air Blast Loading

Author:

Dai Kaida1ORCID,Jiang Tao1,Zhao Meng2,Xu Yuxin1,Zhao Xiaosong1,Bian Jiang1

Affiliation:

1. State Key Laboratory of Explosion Science and Safety Protection, Beijing Institute of Technology, Beijing 100081, China

2. Beijing Institute of Space Long March Vehicle, Beijing 100081, China

Abstract

This paper explores a novel structure aimed at enhancing its blast resistance performance by adding a layer of polyurea coating to the steel-PVC foam-steel sandwich panel. The response of 13 different arrangements of sandwich panels under explosive loading was studied using numerical simulation. The response process can be divided into three deformation stages: (1) Fluid-structure interaction; (2) Compression of the sandwich panel; (3) Dynamic structural response. The dynamic responses of the various sandwich panels to close-range air blast loading were analyzed based on the deformation characteristics, deflection, effective plastic strain, energy absorption, and pressure of the shock wave. The study draws the following conclusions: Reasonably adding a layer of polyurea to the traditional PVC foam sandwich panel can enhance its resistance to shock wave absorption, with a maximum increase of 29.8%; the optimal arrangement for explosion resistance is steel plate-PVC foam-polyurea-steel plate when the polyurea is coated on the back; and the best quality ratio between polyurea and PVC foam is 1:7 when the polyurea is coated on the front.

Publisher

MDPI AG

Reference41 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3