Study on the Preparation and Process Parameter-Mechanical Property Relationships of Carbon Fiber Fabric Reinforced Poly(Ether Ether Ketone) Thermoplastic Composites

Author:

Wang Yan1,Yang Yanchao1,Zhang Hongbo1,Ding Siwen1,Yang Ting1,Pang Jinhui1,Zhang Haibo1,Zhang Jinling1,Zhang Yunhe1,Jiang Zhenhua1

Affiliation:

1. Key Laboratory of High Performance Plastics, Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymers, College of Chemistry, Jilin University, Changchun 130012, China

Abstract

Carbon fiber fabric-reinforced poly(ether ether ketone) (CFF-PEEK) composites exhibit exceptional mechanical properties, and their flexibility and conformability make them a promising alternative to traditional prepregs. However, the formation of the CFF-PEEK composite is trapped in the high viscosity of PEEK, the smooth surface, and tightly interwoven bundles of CFF. It is more difficult for the resin to flow through the fibers of complex textile structures. Here, a simple film stacking method using the hot-pressing process of plain-woven CFF-PEEK thermoplastic composites is discussed. The uniform distribution of PEEK resin between each layer of CFF reduces the flow distance during the molding process, preventing defects in the composite material effectively. Four process parameters, including molding temperature (370, 385, 400, and 415 °C), molding pressure (1, 2, 4, 8, and 10 MPa), molding time (10, 20, 30, 40, 60, and 90 min), and pre-compaction process, are considered. Interlaminar shear strength (ILSS), tensile strength, and flexural strength of CFF/PEEK composites are evaluated to optimize the process parameters. Moreover, ultrasonic scanning microscopy and scanning electron microscopy are employed to observe the formation quality and microscopic failure modes of CFF/PEEK composites, respectively. The ultimate process parameters are a molding temperature of 410 °C, molding pressure of 10 MPa, molding time of 60 min, and the need for the pre-compaction process. Under the best process parameters, the ILSS is 62.5 MPa, the flexural strength is 754.4 MPa, and the tensile strength is 796.1 MPa. This work provides valuable insight for studying the process parameters of fiber fabric-reinforced thermoplastic polymer composites and revealing their impact on mechanical properties.

Funder

National Key Research and Development Program of China

Jilin University

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3