Preparation and Properties of Mechanically Robust, Colorless, and Transparent Aramid Films

Author:

Kim Heesang1ORCID,Noh Jin-Hee12,Kim Young-Rae1,Kim Hyojin2,Kwak Giseop1ORCID

Affiliation:

1. Polymeric Nanomaterials Laboratory, Department of Polymer Science & Engineering, Kyungpook National University, 1370 Sankyuk-Dong, Buk-Ku, Daegu 41566, Republic of Korea

2. Advanced Materials & Components Center, Industry Innovation Division, Daegu Technopark, 46-17 Seongseogongdan-ro, Dalseo-gu, Daegu 42716, Republic of Korea

Abstract

In this study, various diamine monomers were used to synthesize aramid polymer films via a low-temperature solution condensation reaction with diacid chloride. For diamines with relatively high basicity, the reaction system became opaque because amine salt formation inhibited polymer synthesis. Meanwhile, low-basicity diamines with strong electron-withdrawing groups, such as CF3 and sulfone, were smoothly polymerized without amine salt formation to provide highly viscous solutions. The acid byproduct HCl generated during polymerization was removed by adding propylene oxide to the reaction vessel and converting the acid into highly volatile inert substances. The resulting solutions were used as varnishes without any additional purification, and polymer films with an excellent appearance were easily obtained through a conventional casting and convection drying process. The films neither tore nor broke when pulled or bent by hand; furthermore, even when heated up to 400 °C, they did not decompose or melt. Moreover, polymers prepared from 2,2-bis(trifluoromethyl)benzidine (TFMB) and bis(4-aminophenyl)sulfone (pAPS) did not exhibit glass transition until decomposition. The prepared polymer films showed a high elastic modulus of more than 4.1 GPa and a high tensile strength of more than 52 MPa. In particular, TFMB-, pAPS-, and 2,2-bis(4-aminophenyl)hexafluoropropane-based polymer films were colorless and transparent, with very high light transmittances of 95%, 96%, and 91%, respectively, at 420 nm and low yellow indexes of 2.4, 1.9, and 4.3, respectively.

Funder

project for fostering the vision aids industry based on advanced functional materials, supported by the ministry of trade, industry and energy

Publisher

MDPI AG

Reference24 articles.

1. High-performance aromatic polyamides;Serna;Prog. Polym. Sci.,2010

2. Banerjee, S., and Maji, S. (2011). High Performance Polymers and Engineering Plastics, Scrivener Publishing LLC.

3. Reglero Ruiz, J.A., Trigo-López, M., García, F.C., and García, J.M. (2017). Functional aromatic polyamides. Polymers, 9.

4. A review on reinforcement of basalt and aramid (Kevlar 129) fibers;Prasad;Mater. Today Proc.,2018

5. Toward high-performance poly(para-phenylene terephthalamide) (PPTA)-based composite paper via hot-pressing: The key role of partial fibrillation and surface activation;Lu;RSC Adv.,2017

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3