Preparation of Environmentally Friendly Oil- and Water-Resistant Paper Using Holo-Lignocellulosic Nanofibril (LCNF)-Based Composite Coating

Author:

Wang Shengdan12,Pei Lihua3,Wei Jichao4,Xie Jiabao1,Ji Xingxiang1,Wang Yukang2,Jia Peng1ORCID,Jiao Yajuan1ORCID

Affiliation:

1. State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education/Shandong Province, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China

2. Dongying Huatai Chemical Industry Group Co., Ltd., Dongying 257000, China

3. Shandong Dingan Testing Co., Ltd., Jinan 250353, China

4. Shandong Textile & Architecture Design Institute Co., Ltd., Jinan 250353, China

Abstract

In the present study, an environmentally friendly oil- and water-resistant paper was developed using a holo-lignocellulosic nanofibril (LCNF)-based composite coating. The LCNF was prepared from wheat straw using a biomechanical method. Characterizations of oil- and water-resistant coated paper and the effect of LCNF content on the performance of the coated paper were confirmed by combining contact angle analysis, Cobb 300s, and mechanical performance tests. The results show that the barrier performance and mechanical strength of the coated paper were greatly improved with the increase of LCNF content. The contact angle of oil and water of coated paper containing 50% LCNF were 69° and 78°, respectively, while the contact angle of oil and water of the base paper were only 30° and 20°, respectively. Cobb 300s values reduced from 110 g/m2 to 30 g/m2 when the LCNF content increased from 50% to 90%. Moreover, under the coating amount of 20 g/m2, the tensile strength of the coating paper was 0.980 KN/m, an increase of 10.11% compared with the base paper. The bursting strength reached 701.930 KPa, which was 10.75% higher than the base paper. In short, it is feasible to prepare LCNF from wheat straw, and apply it to produce water-proof and oil-proof paper. The water-proof and oil-proof paper developed in this study not only offers a novel approach to addressing white pollution but also presents a new research avenue for exploring the potential applications of agricultural waste.

Funder

Shandong Postdoctoral Innovation Project

QUTJBZ Program

Talent Scientific Research Project of Qilu University of Technology

Foundation of State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences

Pilot Project for Integrating Science, Education and Industry

Natural Science Foundation of Shandong Province of China

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3