Epoxy-Acrylic Polymer In-Situ Filling Cell Lumen and Bonding Cell Wall for Wood Reinforcement and Stabilization

Author:

Liu Yiliang1ORCID,Fan Jilong1,Yao Fengbiao1,Gao Xudong1,Zhao Yueying2,Liu Baoxuan3,Dong Xiaoying1,Li Yongfeng14ORCID

Affiliation:

1. Key Laboratory of State Forestry Administration for Silviculture of the Lower Yellow River, College of Forestry, Shandong Agricultural University, Tai’an 271018, China

2. Shandong Everjoy Technology Material Co., Ltd., Jining 277600, China

3. Shandong Laucork Development Co., Ltd., Jining 272100, China

4. Key Laboratory of Bio-Based Material Science and Technology of Ministry of Education, Northeast Forestry University, No. 26 Hexing Road, Harbin 150040, China

Abstract

Under a global carbon-neutralizing environment, renewable wood is a viable alternative to non-renewable resources due to its abundance and high specific strength. However, fast-growing wood is hard to be applied extensively due to low mechanical strength and poor dimensional stability and durability. In this study, epoxy-acrylic resin-modified wood was prepared by forming a functional monomer system with three monomers [glycidyl methacrylate (GMA), maleic anhydride (MAN), and polyethylene glycol-200-dimethylacrylic acid (PEGDMA)] and filling into the wood cell cavity. The results showed that in the case of an optimal monomer system of nGMA:nPEGDMA = 20:1 and an optimal MAN dosage of 6%, the conversion rate of monomers reached 98.01%, the cell cavity was evenly filled by the polymer, with the cell wall chemically bonded. Thus, a bonding strength of as high as 1.13 MPa, a bending strength of 112.6 MPa and an impact toughness of 74.85 KJ/m2 were applied to the modified wood, which presented excellent dimensional stability (720 h water absorption: 26%, and volume expansion ratio: 5.04%) and rot resistance (loss rates from white rot and brown rot: 3.05% and 0.67%). Additionally, polymer-modified wood also exhibited excellent wear resistance and heat stability. This study reports a novel approach for building new environmentally friendly wood with high strength and toughness and good structural stability and durability.

Funder

Natural Science Foundation of Shandong Province

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3