Production of Lignin-Derived Functional Material for Efficient Electromagnetic Wave Absorption with an Ultralow Filler Ratio

Author:

Xi Yuebin1,Ji Xingxiang1,Kong Fangong1,Li Tianjin12ORCID,Zhang Binpeng3

Affiliation:

1. Key Laboratory of Pulp and Paper Science and Technology of Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China

2. Energy Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China

3. School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China

Abstract

Industrial lignin, a by-product of pulping for papermaking fibers or of second-generation ethanol production, is primarily served as a low-grade combustible energy source. The fabrication of high-value-added functional materials with industrial lignin is still a challenge. Herein, a three-dimensional hierarchical lignin-derived porous carbon (HLPC) was prepared with lignosulfonate as the carbon source and MgCO3 as the template. The uniform mixing of precursor and template agent resulted in the construction of a three-dimensional hierarchical porous structure. HLPC presented excellent electromagnetic wave (EMW) absorption performance. With a low filler content of 7 wt%, HLPC showed a minimum reflection loss (RL) value of −41.8 dB (1.7 mm, 13.8 GHz), and a maximum effective absorption bandwidth (EAB) of 4.53 GHz (1.6 mm). In addition, the enhancement mechanism of HLPC for EMW absorption was also explored through comparing the morphology and electromagnetic parameters of lignin-derived carbon (LC) and lignin-derived porous carbon (LPC). The three-dimensional hierarchical porous structure endowed the carbon with a high pore volume, resulting in an abundant gas–solid interface between air and carbon for interfacial polarization. This structure also provided conductive networks for conduction loss. This work offers a strategy to synthesize biomass-based carbon for high-performance EMW absorption.

Funder

Science and Technology Foundation of Henan Province

Key Laboratory of Pulp and Paper Science and Technology of Ministry of Education of China

Shandong Provincial Key Laboratory of Biomass Gasification Technology, Qilu University of Technology

Qilu University of Technology (Shandong Academy of Sciences), Science, Education and Industry integration innovation pilot project

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province Youth Project

State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3