Impact of CAD/CAM Material Thickness and Translucency on the Polymerization of Dual-Cure Resin Cement in Endocrowns

Author:

Ikemoto Soshi12,Komagata Yuya1,Yoshii Shinji3,Masaki Chihiro2,Hosokawa Ryuji2,Ikeda Hiroshi1ORCID

Affiliation:

1. Division of Biomaterials, Kyushu Dental University, Kitakyushu 803-8580, Japan

2. Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Kitakyushu 803-8580, Japan

3. Division of Promoting Learning Design Education, Kyushu Dental University, Kitakyushu 803-8580, Japan

Abstract

The objective of this study is to evaluate the impact of the thickness and translucency of various computer-aided design/computer-aided manufacturing (CAD/CAM) materials on the polymerization of dual-cure resin cement in endocrown restorations. Three commercially available CAD/CAM materials—lithium disilicate glass (e.max CAD), resin composite (CERASMART), and a polymer-infiltrated ceramic network (ENAMIC)—were cut into plates with five different thicknesses (1.5, 3.5, 5.5, 7.5, and 9.5 mm) in both high-translucency (HT) and low-translucency (LT) grades. Panavia V5, a commercial dual-cure resin cement, was polymerized through each plate by light irradiation. Post-polymerization treatment was performed by aging at 37 °C for 24 h under light-shielding conditions. The degree of conversion and Vickers hardness measurements were used to characterize the polymerization of the cement. The findings revealed a significant decrease in both the degree of conversion and Vickers hardness with increasing thickness across all CAD/CAM materials. Notably, while the differences in the degree of conversion and Vickers hardness between the HT and LT grades of each material were significant immediately after photoirradiation, these differences became smaller after post-polymerization treatment. Significant differences were observed between samples with a 1.5 mm thickness (conventional crowns) and those with a 5.5 mm or greater thickness (endocrowns), even after post-polymerization treatment. These results suggest that dual-cure resin cement in endocrown restorations undergoes insufficient polymerization.

Funder

JSPS KAKENHI

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3