Facilitated Transport across Glycocalyceal Barriers in the Chick Chorioallantoic Membrane

Author:

Dayal Anuhya1,Pan Jennifer M.1,Kwan Stacey P.1,Ackermann Maximilian2ORCID,Khalil Hassan A.1ORCID,Mentzer Steven J.1ORCID

Affiliation:

1. Laboratory of Adaptive and Regenerative Biology, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA

2. Institute of Functional and Clinical Anatomy, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany

Abstract

Targeted drug delivery to visceral organs offers the possibility of not only limiting the required dose, but also minimizing drug toxicity; however, there is no reliable method for delivering drugs to the surface of visceral organs. Here, we used six color tracers and the chick chorioallantoic membrane (CAM) model to investigate the use of the heteropolysaccharide pectin to facilitate tracer diffusion across the glycocalyceal charge barrier. The color tracers included brilliant blue, Congo red, crystal violet, indocyanine green, methylene blue, and methyl green. The direct application of the tracers to the CAM surface or embedding tracers into linear-chain nanocellulose fiber films resulted in no significant diffusion into the CAM. In contrast, when the tracers were actively loaded into branched-chain pectin films, there was significant detectable diffusion of the tracers into the CAM. The facilitated diffusion was observed in the three cationic tracers but was limited in the three anionic tracers. Diffusion appeared to be dependent on ionic charge, but independent of tracer size or molecular mass. We conclude that dye-loaded pectin films facilitated the diffusion of color tracers across the glycocalyceal charge barrier and may provide a therapeutic path for drug delivery to the surface of visceral organs.

Funder

NIH

German Research Foundation

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3