Effects of Ferric Ions on Cellulose Nanocrystalline-Based Chiral Nematic Film and Its Applications

Author:

Wang Shuaiqi1,Lin Bingqun1,Zeng Yihan1,Pan Mingzhu1ORCID

Affiliation:

1. College of Materials Science and Engineering, Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China

Abstract

Chiral nematic materials have been attracting attention in fields of advanced functional applications due to their unique iridescent colors and tunable helical structure. A precisely decreased pitch is of importance for construction and applications of chiral nematic materials; however, it remains a huge challenge. Herein, cellulose nanocrystal (CNC) is selected as a constructed matrix for chiral nematic films, and ferric chloride (FeCl3) is used as a modification agent. We investigate the effects of the ferric ion loads on the helical structure and optical characteristics of iridescent film. Subsequently, the influence of ferric ions on the assembly process of CNC liquid crystal and the regulation of the structure color of self-assembled monolayers are discussed. Therefore, the CNC/FeCl3 chiral nematic films showed a blueshifted structural color from orange to blue, which highlights a simple route to achieve the regulation of decreased pitch. Further, we have applied this CNC/FeCl3 chiral nematic film for benzene gas detection. The sensing performance shows that the CNC/FeCl3 chiral nematic film reacts to benzene gas, which can be merged into the nematic layer of the CNC and trigger the iron ions chelated on the CNC, consequently arousing the redshift of the reflected wavelength and the effective colorimetric transition. This CNC/FeCl3 chiral nematic film is anticipated to boost a new gas sensing mechanism for faster and more effective in-situ qualitative investigations.

Funder

Natural Science Foundation of Jiangsu Province

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3