Affiliation:
1. Federal State Budgetary Educational Institution of Higher Education, Privolzhsky Research Medical University of the Ministry of Health of the Russian Federation, Minin and Pozharsky Square 10/1, Nizhny Novgorod 603005, Russia
2. G. A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Tropinina 49, Nizhny Novgorod 603950, Russia
Abstract
This paper provides a study of two bone substitutes: a hybrid porous polymer and an osteoplastic matrix based on a bovine-derived xenograft. Both materials are porous, but their pore characteristics are different. The osteoplastic matrix has pores of 300–600 µm and the hybrid polymer has smaller pores, generally of 6–20 µm, but with some pores up to 100 µm across. SEM data confirmed the porometry results and demonstrated the different structures of the materials. Therefore, both materials were characterized by an interconnected porous structure and provided conditions for the adhesion and vital activity of human ASCs in vitro. In an experimental model of rabbit shin bone defect, it was shown that, during the 6-month observation period, neither of the materials caused negative reactions in the experimental animals. By the end of the observation period, restoration of the defects in animals in both groups was completed, and elements of both materials were preserved in the defect areas. Data from morphological examinations and CT data demonstrated that the rate of rabbit bone tissue regeneration with the hybrid polymer was comparable to that with the osteoplastic matrix. Therefore, the hybrid polymer has good potential for use in further research and improvement in biomedical applications.
Funder
Ministry of Science and Higher Education of the Russian Federation