Abstract
The effectiveness of externally applied fiber-reinforced polymer (FRP) ropes made of carbon fibers in X-shape formation and in both sides of the joint area of reinforced concrete (RC) beam–column connections is experimentally investigated. Six full-scale exterior RC beam–column joint specimens are tested under reverse cyclic deformation. Three of them have been strengthened using carbon FRP (CFRP) ropes that have been placed diagonally in the joint as additional, near surface-mounted reinforcements against shear. Full hysteretic curves, maximum applied load capacity, damage modes, stiffness and energy dissipation values per each loading step are presented and compared. Test results indicated that joint sub assemblages with X-shaped CFRP ropes exhibited improved hysteretic behavior and ameliorated performance with respect to the reference specimens. The effectiveness and the easy-to-apply character of the presented strengthening technique is also discussed.
Subject
Mechanics of Materials,Biomaterials,Civil and Structural Engineering,Ceramics and Composites
Cited by
43 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献