Micromechanical Modeling of Anisotropy and Strain Rate Dependence of Short-Fiber-Reinforced Thermoplastics

Author:

Zhang Shaokang,van Dommelen Johannes A. W.,Govaert Leon E.

Abstract

The anisotropy and strain rate dependence of the mechanical response of short-fiber-reinforced thermoplastics was studied using a straightforward micromechanical finite element analysis of representative volume elements (RVEs). RVEs are created based on the fiber orientation tensor, which quantifies the processing-induced fiber orientation distribution. The matrix is described by a strain rate-dependent constitutive model (the Eindhoven glassy polymer (EGP) model), which accurately captures the intrinsic response of amorphous polymers. The micromechanical results indicate that the influence of strain rate and that of the loading direction on the yield stress are multiplicatively decouplable, which confirms previous experimental observations. Moreover, it is demonstrated that the yield stress, to a good approximation, can be directly linked to the fiber orientation in the direction of loading. This leads to a new relation that uniquely links the rate dependence of the yield stress to the fiber orientation in loading direction.

Funder

SABIC

Publisher

MDPI AG

Subject

Mechanics of Materials,Biomaterials,Civil and Structural Engineering,Ceramics and Composites

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3