Abstract
People with severe disabilities require assistance to perform their routine activities; a Human–Machine Interface (HMI) will allow them to activate devices that respond according to their needs. In this work, an HMI based on electrooculography (EOG) is presented, the instrumentation is placed on portable glasses that have the task of acquiring both horizontal and vertical EOG signals. The registration of each eye movement is identified by a class and categorized using the one hot encoding technique to test precision and sensitivity of different machine learning classification algorithms capable of identifying new data from the eye registration; the algorithm allows to discriminate blinks in order not to disturb the acquisition of the eyeball position commands. The implementation of the classifier consists of the control of a three-wheeled omnidirectional robot to validate the response of the interface. This work proposes the classification of signals in real time and the customization of the interface, minimizing the user’s learning curve. Preliminary results showed that it is possible to generate trajectories to control an omnidirectional robot to implement in the future assistance system to control position through gaze orientation.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献