Towards Interpretable Deep Learning: A Feature Selection Framework for Prognostics and Health Management Using Deep Neural Networks

Author:

Figueroa Barraza JoaquínORCID,López Droguett EnriqueORCID,Martins Marcelo RamosORCID

Abstract

In the last five years, the inclusion of Deep Learning algorithms in prognostics and health management (PHM) has led to a performance increase in diagnostics, prognostics, and anomaly detection. However, the lack of interpretability of these models results in resistance towards their deployment. Deep Learning-based models fall within the accuracy/interpretability tradeoff, which means that their complexity leads to high performance levels but lacks interpretability. This work aims at addressing this tradeoff by proposing a technique for feature selection embedded in deep neural networks that uses a feature selection (FS) layer trained with the rest of the network to evaluate the input features’ importance. The importance values are used to determine which will be considered for deployment of a PHM model. For comparison with other techniques, this paper introduces a new metric called ranking quality score (RQS), that measures how performance evolves while following the corresponding ranking. The proposed framework is exemplified with three case studies involving health state diagnostics and prognostics and remaining useful life prediction. Results show that the proposed technique achieves higher RQS than the compared techniques, while maintaining the same performance level when compared to the same model but without an FS layer.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Agencia Nacional de Investigación y Desarrollo

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference88 articles.

1. Perceptrons—An Introduction to Computational Geometry;Minsky,1969

2. The perceptron: A probabilistic model for information storage and organization in the brain.

3. Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences;Werbos,1974

4. A logical calculus of the ideas immanent in nervous activity

5. Cybernetics and Forecasting Techniques;Ivakhnenko,1967

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3