Abstract
In recent years, there has been an increasing interest in the use of highly nonlinear solitary waves (HNSWs) for nondestructive evaluation and structural health monitoring applications. HNSWs are mechanical waves that can form and travel in highly nonlinear systems, such as granular particles in Hertzian contact. The easiest setup consists of a built-in transducer in drypoint contact with the structure or material to be inspected/monitored. The transducer is made of a monoperiodic array of spherical particles that enables the excitation and detection of the solitary waves. The transducer is wired to a data acquisition system that controls the functionality of the transducer and stores the time series for post-processing. In this paper, the design and testing of a wireless unit that enables the remote control of a transducer without the need to connect it to sophisticated test equipment are presented. Comparative tests and analyses between the measurements obtained with the newly designed wireless unit and the conventional wired configuration are provided. The results are corroborated by an analytical model that predicts the dynamic interaction between solitary waves and materials with different modulus. The advantages and limitations of the proposed wireless platform are given along with some suggestions for future developments.
Funder
National Science Foundation
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献