Effects of rpl1001 Gene Deletion on Cell Division of Fission Yeast and Its Molecular Mechanism

Author:

Yu Wen1,Yuan Rongmei1,Liu Mengnan1,Liu Ke1,Ding Xiang2,Hou Yiling1

Affiliation:

1. Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Science, China West Normal University, Nanchong 637009, China

2. College of Environmental Science and Engineering, China West Normal University, Nanchong 637009, China

Abstract

The rpl1001 gene encodes 60S ribosomal protein L10, which is involved in intracellular protein synthesis and cell growth. However, it is not yet known whether it is involved in the regulation of cell mitosis dynamics. This study focuses on the growth, spore production, cell morphology, the dynamics of microtubules, chromosomes, actin, myosin, and mitochondria of fission yeast (Schizosaccharomyces pombe) to investigate the impact of rpl1001 deletion on cell mitosis. RNA-Seq and bioinformatics analyses were also used to reveal key genes, such as hsp16, mfm1 and isp3, and proteasome pathways. The results showed that rpl1001 deletion resulted in slow cell growth, abnormal spore production, altered cell morphology, and abnormal microtubule number and length during interphase. The cell dynamics of the rpl1001Δ strain showed that the formation of a monopolar spindle leads to abnormal chromosome segregation with increased rate of spindle elongation in anaphase of mitosis, decreased total time of division, prolonged formation time of actin and myosin loops, and increased expression of mitochondrial proteins. Analysis of the RNA-Seq sequencing results showed that the proteasome pathway, up-regulation of isp3, and down-regulation of mfm1 and mfm2 in the rpl1001Δ strain were the main factors underpinning the increased number of spore production. Also, in the rpl1001Δ strain, down-regulation of dis1 caused the abnormal microtubule and chromosome dynamics, and down-regulation of hsp16 and pgk1 were the key genes affecting the delay of actin ring and myosin ring formation. This study reveals the effect and molecular mechanism of rpl1001 gene deletion on cell division, which provides the scientific basis for further clarifying the function of the Rpl1001 protein in cell division.

Funder

Sichuan Province Science and Technology Support Project

Dazhou city-school cooperation project

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3