Abstract
Thermal energy storage is known as a key element to optimize the use of renewable energies and to improve building performances. Phase change materials (PCMs) derived from wastes or by-products of plant or animal oil origins are low-cost biosourced PCMs and are composed of more than 75% of fatty acids. They present paraffin-like storage properties and melting temperatures ranging from −23 °C to 78 °C. Therefore, they could be appropriate for latent heat storage technologies for building applications. Although already studied, a more detailed exploration of this class of PCMs is still required. In this frame, a screening of fatty acids and of their related binary systems must be performed. The infrared thermography method (IRT), already used for the fast estimation of simple phase diagrams (~2 h), appears to be best suited to achieve this goal. IRT method applicability to the more complex fatty acids phase diagrams is hence studied in this work. A phase diagram comprising more than a hundred data sets was obtained for the palmitic acid–stearic acid binary system. The reliability of the results is assessed by comparison to differential scanning calorimetry (DSC) measurements or results from other standard methods presented in literature and to a solid–liquid equilibrium thermodynamic model.
Funder
European Regional Development Fund
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献