Prediction Model of Compressive Strength Development in Concrete Containing Four Kinds of Gelled Materials with the Artificial Intelligence Method

Author:

Liu Guohua,Zheng Jian

Abstract

Green concrete has been widely used in recent years because its production compliments environmental conservation. The prediction of the compressive strength of concrete using non-destructive techniques is of interest to engineers worldwide. Such methods are easy to carry out because they require little or no sample preparation. Conventional models and artificial intelligence models are two main types of models to predict the compressive strength of concrete. Artificial intelligence models main include the artificial neural network (ANN) model, back propagation (BP) neural network model, fuzzy model etc. Since both conventional models and artificial intelligence models are flawed. This study proposes to build a concrete compressive strength development over time (CCSDOT) model by using conventional method combined with the artificial intelligence method. The CCSDOT model performed well in predicting and fitting the compressive strength development in green concrete containing cement, slag, fly ash, and limestone flour. It is concluded that the CCSDOT model is stable through the use of sensitivity analysis. To evaluate the precision of this model, the prediction results of the proposed model were compared to that of the model based on the BP neural network. The results verify that the recommended model enjoys better flexibility, capability, and accuracy in predicting the compressive strength development in concrete than the other models.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference37 articles.

1. Properties of Concrete;Neville,1981

2. Materials of Construction;Akman,1987

3. Aggregates;Erdoğan,1985

4. Evaluation of concrete compressive strength using artificial neural network and multiple linear regression models;Khademi;Int. J. Optim. Civ. Eng.,2016

5. An experimental study on optimum usage of GGBS for the compressive strength of concrete

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3