An Investigation into Sheet-Inconel 718 Forming with Flexible and Metal Tools—Simulation and Experiment

Author:

Balcerzak Maciej1,Rusz Stanislav2ORCID,Čada Radek2ORCID,Pastrňák Martin2ORCID,Hilšer Ondřej2ORCID,Greger Miroslav2

Affiliation:

1. Department of Metal Working and Physical Metallurgy of Non-Ferrous Metals, Faculty of Non-Ferrous Metals, AGH University of Krakow, al. Adama Mickiewicza 30, 30-059 Cracow, Poland

2. Department of Mechanical Technology, Faculty of Mechanical Engineering, VSB—Technical University of Ostrava, 17. Listopadu 2172/15, 708 00 Ostrava, Czech Republic

Abstract

The article presents the results of numerical simulations and experimental tests of plastic forming sheets made from the difficult-to-deform nickel alloy Inconel 718 with a thickness of 1 mm, using punches made from elastomeric materials with hardness 50–90 Shore A and steel dies. Elastomeric stamps were created in the form of five layers with a diameter of 160 mm. The influence of the hardness of the elastomeric punches on the geometry of the elements obtained was determined. The dies were made from 90MnCrV8 steel with a hardness of over 60 HRC. Their task was to obtain the expected shape of the element while generating various stress states in specific areas of the semi-finished product. The research was carried out using an original device whose operating principle was based on the Guerin method. The shape and dimensions of the elements made from Inconel 718 nickel alloy were determined by optical 3D scanning. The geometry of the drawpiece showed a significant impact of the hardness of the layered elastomer matrices on the degree of shape reproduction. The results obtained from numerical modeling were confirmed by the results of experimental tests. It has been shown that the hardness of the elastomeric material used for punches for plastic forming Inconel 718 nickel alloy sheets should be adapted to the shape of the drawpiece. It was also found that one of the important aspects of plastic forming sheets using the Guerin method is the tendency to obtain a diversified shape of the final elements.

Funder

Ministry of Education, Youth and Sports of the Czech Republic

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3