Advanced 3D Printing of Polyetherketoneketone Hydroxyapatite Composites via Fused Filament Fabrication with Increased Interlayer Connection

Author:

Rodzeń Krzysztof1,O’Donnell Eiméar1,Hasson Frances1ORCID,McIlhagger Alistair1,Meenan Brian J.1ORCID,Ullah Jawad1,Strachota Beata2,Strachota Adam2ORCID,Duffy Sean1,Boyd Adrian1ORCID

Affiliation:

1. School of Engineering, Ulster University, York St, Belfast BT15 1ED, UK

2. Institute of Macromolecular Chemistry v.v.i., Academy of Sciences of the Czech Republic, Heyrovskeho nam. 2, 162 00 Praha, Czech Republic

Abstract

Additively manufactured implants, surgical guides, and medical devices that would have direct contact with the human body require predictable behaviour when stress is applied during their standard operation. Products built with Fused Filament Fabrication (FFF) possess orthotropic characteristics, thus, it is necessary to determine the properties that can be achieved in the XY- and Z-directions of printing. A concentration of 10 wt% of hydroxyapatite (HA) in polyetherketoneketone (PEKK) matrix was selected as the most promising biomaterial supporting cell attachment for medical applications and was characterized with an Ultimate Tensile Strength (UTS) of 78.3 MPa and 43.9 MPa in the XY- and Z-directions of 3D printing, respectively. The effect of the filler on the crystallization kinetics, which is a key parameter for the selection of semicrystalline materials suitable for 3D printing, was explained. This work clearly shows that only in situ crystallization provides the ability to build parts with a more thermodynamically stable primary form of crystallites.

Funder

SEPUB

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3