Performance Research of Cement Concrete Pavements with a Lower Carbon Footprint

Author:

Rudnicki Tomasz1ORCID,Stałowski Przemysław2

Affiliation:

1. Faculty of Civil Engineering and Geodesy, Military University of Technology, 2 Kaliskiego St, 00-908 Warsaw, Poland

2. Faculty of Civil and Environmental Engineering and Architecture, Bydgoszcz University of Science and Technology, 85-796 Bydgoszcz, Poland

Abstract

The growing interest in the use of building materials with a reduced carbon footprint was the aim of this research assessing the impact of four different types of low-emission cements on the properties of cement concretes used for the construction of local roads. This research work attempted to verify the strength characteristics and assess the durability of such solutions, which used the commonly used CEM I 42.5 R pure clinker cement and three multi-component cements: CEM II/A-V 42.5 R, CEM III/A 42.5 N-LH/HSR/NA, and CEM V/A S-V 42.5 N-LH/HSR/NA. Cement was used in a constant amount of 360 kg/m3, sand of 0/2 mm, and granite aggregate fractions of 2/8 and 8/16 mm. This research was carried out in two areas: the first concerned strength tests and the second focused on the area of assessing the durability of concrete in terms of frost resistance F150, resistance to de-icing agents, water penetration under pressure, and an analysis of the air entrainment structure in concrete according to the PN EN 480-11 standard. Analyzing the obtained test results, it can be concluded that the highest compressive strength of more than 70 MPa was obtained for CEM III concrete, 68 MPa for CEM V concrete, and the lowest for CEM I cement after 90 days. After the durability tests, it was found that the smallest decrease in compressive strength after 150 freezing and thawing cycles was obtained for CEM III (−0.9%) and CEM V (−1.4%) concretes. The high durability of concrete is confirmed by water penetration tests under pressure, because for newly designed recipes using CEM II, CEM III, and CEM V, water penetration from 17 mm to 18 mm was achieved, which proves the very high tightness of the concrete. The assessment of the durability of low-emission cements was confirmed by tests of resistance to de-icing agents and the aeration structure performed under a microscope in accordance with the requirements of the PN-EN 480-11 standard. The obtained analysis results indicate the correct structure and minimal spacing of air bubbles in the concrete, which confirms and guarantees the durability of concrete intended for road construction. Concretes designed using CEM V cement are characterized by a carbon footprint reduction of 36%, and for the mixture based on CEM III, we even observed a decrease of 39% compared to traditional concrete. Concrete using CEM II, CEM III, and CEM V cements can be successfully used for the construction of local roads. Therefore, it is necessary to consider changing the requirements of the technical specifications recommended for roads in Poland.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3