Clinical Trial Data on the Mechanical Removal of 14-Day-Old Dental Plaque Using Accelerated Micro-Droplets of Air and Water (Airfloss)

Author:

Del Rey Yumi C.1ORCID,Rikvold Pernille D.1,Johnsen Karina K.1,Schlafer Sebastian1ORCID

Affiliation:

1. Department of Dentistry and Oral Health, Section for Oral Ecology and Caries Control, Aarhus University, 8000 Aarhus, Denmark

Abstract

Novel strategies to combat dental biofilms aim at reducing biofilm stability with the ultimate goal of facilitating mechanical cleaning. To test the stability of dental biofilms, they need to be subjected to a defined mechanical stress. Here, we employed an oral care device (Airfloss) that emits microbursts of compressed air and water to apply a defined mechanical shear to 14-day-old dental plaque in 20 healthy participants with no signs of oral diseases (clinical trial no. NCT05082103). Exclusion criteria included pregnant or nursing women, users of oral prostheses, retainers or orthodontic appliances, and recent antimicrobial or anti-inflammatory therapy. Plaque accumulation, before and after treatment, was assessed using fluorescence images of disclosed dental plaque on the central incisor, first premolar, and first molar in the third quadrant (120 images). For each tooth, the pre- and post-treatment plaque percentage index (PPI) and Turesky modification of the Quigley-Hein plaque index (TM-QHPI) were recorded. The mean TM-QHPI significantly decreased after treatment (p = 0.03; one-sample sign test), but no significant difference between the mean pre- and post-treatment PPI was observed (p = 0.09; one-sample t-test). These data are of value for researchers that seek to apply a defined mechanical shear to remove and/or disrupt dental biofilms.

Funder

Novozymes A/S

Innovation Fund Denmark

Publisher

MDPI AG

Subject

Information Systems and Management,Computer Science Applications,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3