Abstract
The prevention of hydrogen penetration into steels can effectively protect steels from hydrogen damage. In this study, we investigated the effect of a monolayer MoS2 coating on hydrogen prevention using first-principles calculations. We found that monolayer MoS2 can effectively inhibit the dissociative adsorption of hydrogen molecules on an Fe(111) surface by forming a S–H bond. MoS2 coating acts as an energy barrier, interrupting hydrogen penetration. Furthermore, compared with the H-adsorbed Fe(111) film, the work function of the MoS2-coated film significantly increases under both equilibrium and strained conditions, indicating that the strained Fe(111) film with the MoS2 coating also becomes more corrosion resistant. The results reveal that MoS2 film is an effective coating to prevent hydrogen damage in steels.
Funder
National Natural Science Foundation of China
Subject
General Materials Science,General Chemical Engineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献