Coupling Plasmonic and Cocatalyst Nanoparticles on N–TiO2 for Visible-Light-Driven Catalytic Organic Synthesis

Author:

Wang Yannan,Chen Yu,Hou Qidong,Ju Meiting,Li Weizun

Abstract

The use of the surface plasmon resonance (SPR) effect of plasmonic metal nanocomposites to promote photocarrier generation is a strongly emerging field for improving the catalytic performance under visible-light irradiation. In this study, a novel plasmonic photocatalyst, AuPt/N–TiO2, was prepared via a photo-deposition–calcination technique. The Au nanoparticles (NPs) were used herein to harvest visible-light energy via the SPR effect, and Pt NPs were employed as a cocatalyst for trapping the energetic electrons from the semiconductor, leading to a high solar-energy conversion efficiency. The Au2Pt2/N–TiO2 catalyst, herein with the irradiation wavelength in the range 460–800 nm, exhibited a reaction rate ~24 times greater than that of TiO2, and the apparent quantum yield at 500 nm reached 5.86%, indicative of the successful functionalization of N–TiO2 by the integration of Au plasmonic NPs and the Pt cocatalyst. Also, we investigated the effects of two parameters, light source intensity and wavelength, in photocatalytic reactions. It is indicated that the as-prepared AuPt/N–TiO2 photocatalyst can cause selective oxidation of benzyl alcohol under visible-light irradiation with a markedly enhanced selectivity and yield.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Tianjin, China

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3