Influence of Graphene Oxide on the Mechanical Properties, Fracture Toughness, and Microhardness of Recycled Concrete

Author:

Luo JianlinORCID,Chen Shuaichao,Li Qiuyi,Liu Chao,Gao Song,Zhang Jigang,Guo Junbing

Abstract

There is a constant drive to improve the properties of recycled concrete owing to its inferior strength and fracture toughness compared to normal concrete and recent progress in graphene oxide (GO) nanomaterials impelling nanosized reinforcements to recycled concrete. Here, GO-modified natural sand (NS)- or recycled sand (RS)-based mortars (GONMs or GORMs) with six GO fractions (wGOs) were fabricated to explore their 28 d mechanical strengths (f28t, f28c), fracture toughness (KIC, δc), and microhardness (Hv), as well as their crystal phases (using X-ray powder diffraction) and microstructures (using scanning electronic microscopy). Results reveal, greater enhancements in mechanical strengths (4.50% and 10.61% in f28t, 4.76% and 13.87% in f28c), fracture toughness (16.49% and 38.17% in KIC, 160.14% and 286.59% in δc), and microhardness (21.02% and 52.70% in Hv) of GORM with just 0.025 wt‰ and 0.05 wt‰ GO, respectively, with respect to the control are achieved when comparing with those of GONM with the same wGO. More zigzag surfaces, more irregular weak interface slips, and the relatively lower strengths of RS bring the superiority of the template and reshaping effects of GO into full play in GORM rather than in GONM. These outcomes benefit a wide range of applications of recycled concrete products.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3