One-Step Low Temperature Hydrothermal Synthesis of Flexible TiO2/PVDF@MoS2 Core-Shell Heterostructured Fibers for Visible-Light-Driven Photocatalysis and Self-Cleaning

Author:

Zhang Zhi-Guang,Liu Hui,Wang Xiao-Xiong,Zhang Jun,Yu Miao,Ramakrishna Seeram,Long Yun-Ze

Abstract

Novel flexible and recyclable core-shell heterostructured fibers based on cauliflower-like MoS2 and TiO2/PVDF fibers have been designed through one-step hydrothermal treatment based on electrospun tetrabutyl orthotitanate (TBOT)/PVDF fibers. The low hydrothermal temperature avoids the high temperature process and keeps the flexibility of the as-synthesized materials. The formation mechanism of the resultant product is discussed in detail. The composite of MoS2 not only expands the light harvesting window to include visible light, but also increases the separation efficiency of photo-generated electrons and holes. The as-prepared product has proven to possess excellent and stable photocatalytic activity in the degradation of Rhodamine B and levofloxacin hydrochloride under visible light irradiation. In addition, the TiO2/PVDF@MoS2 core-shell heterostructured fibers exhibit self-cleaning property to dye droplets under visible light irradiation. Meanwhile, due to its hydrophobicity, the resultant product can automatically remove dust on its surface under the rolling condition of droplets. Hence, the as-prepared product cannot only degrade the contaminated compounds on the surface of the material, but also reduce the maintenance cost of the material due to its self-cleaning performance. Therefore, the as-prepared product possesses potential applications in degradation of organic pollutants and water treatment, which makes it a prospective material in the field of environmental treatment.

Funder

National Natural Science Foundation of China

Postdoctoral Scientific Research Foundation of Qingdao

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3