Abstract
Two-dimensional transition metal dichalcogenides (TMDs) have attracted attention from researchers in recent years. Monolayer molybdenum disulfide (MoS2) is the direct band gap two-dimensional crystal with excellent physical and electrical properties. Monolayer MoS2 can effectively compensate for the lack of band gap of graphene in the field of nano-electronic devices, which is widely used in catalysis, transistors, optoelectronic devices, and integrated circuits. Therefore, it is critical to obtain high-quality, large size monolayer MoS2. The large-area uniform high-quality monolayer MoS2 is successfully grown on an SiO2/Si substrate with oxygen plasma treatment and graphene quantum dot solution by atmospheric pressure chemical vapor deposition (APCVD) in this paper. In addition, the effects of substrate processing conditions, such as oxygen plasma treatment time, power, and dosage of graphene quantum dot solution on growth quality and the area of the monolayer of MoS2, are studied systematically, which would contribute to the preparation of large-area high-quality monolayer MoS2. Analysis and characterization of monolayer MoS2 are carried out by Optical Microscopy, AFM, XPS, Raman, and Photoluminescence Spectroscopy. The results show that monolayer MoS2 is a large-area, uniform, and triangular with a side length of 200 μm, and it is very effective to treat the SiO2/Si substrate by oxygen plasma and graphene quantum dot solution, which would help the fabrication of optoelectronic devices.
Funder
National Natural Science Foundation of China
Foundation for Fundamental Research of China
Subject
General Materials Science,General Chemical Engineering
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献