New Insights about CuO Nanoparticles from Inelastic Neutron Scattering

Author:

Spencer Elinor,Kolesnikov Alexander,Woodfield Brian,Ross Nancy

Abstract

Inelastic Neutron Scattering (INS) spectroscopy has provided a unique insight into the magnetodymanics of nanoscale copper (II) oxide (CuO). We present evidence for the propagation of magnons in the directions of the ordering vectors of both the commensurate and helically modulated incommensurate antiferromagnetic phases of CuO. The temperature dependency of the magnon spin-wave intensity (in the accessible energy-range of the experiment) conforms to the Bose population of states at low temperatures (T ≤ 100 K), as expected for bosons, then intensity significantly increases, with maximum at about 225 K (close to TN), and decreases at higher temperatures. The obtained results can be related to gradual softening of the dispersion curves of magnon spin-waves and decreasing the spin gap with temperature approaching TN on heating, and slow dissipation of the short-range dynamic spin correlations at higher temperatures. However, the intensity of the magnon signal was found to be particle size dependent, and increases with decreasing particle size. This “reverse size effect” is believed to be related to either creation of single-domain particles at the nanoscale, or “superferromagnetism effect” and the formation of collective particle states.

Funder

U.S. Department of Energy

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3