Effect of Metal Ions on Hybrid Graphite-Diamond Nanowire Growth: Conductivity Measurements from a Single Nanowire Device

Author:

Shellaiah Muthaiah,Chen Ying-Chou,Simon Turibius,Li Liang-ChenORCID,Sun Kien,Ko Fu-Hsiang

Abstract

Novel Cd2+ ions mediated reproducible hybrid graphite-diamond nanowire (G-DNWs; Cd2+-NDS1 NW) growth from 4-Amino-5-phenyl-4H-1,2,4-triazole-3-thiol (S1) functionalized diamond nanoparticles (NDS1) via supramolecular assembly is reported and demonstrated through TEM and AFM images. FTIR, EDX and XPS studies reveal the supramolecular coordination between functional units of NDS1 and Cd2+ ions towards NWs growth. Investigations of XPS, XRD and Raman data show the covering of graphite sheath over DNWs. Moreover, HR-TEM studies on Cd2+-NDS1 NW confirm the coexistence of less perfect sp2 graphite layer and sp3 diamond carbon along with impurity channels and flatten surface morphology. Possible mechanisms behind the G-DNWs growth are proposed and clarified. Subsequently, conductivity of the as-grown G-DNWs is determined through the fabrication of a single Cd2+-NDS1 NW device, in which the G-DNW portion L2 demonstrates a better conductivity of 2.31 × 10−4 mS/cm. In addition, we investigate the temperature-dependent carrier transport mechanisms and the corresponding activation energy in details. Finally, comparisons in electrical resistivities with other carbon-based materials are made to validate the importance of our conductivity measurements.

Funder

Ministry of Science and Technology of Taiwan

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3