Abstract
Dissolved iron (Fe) isotopes in river water have a pivotal role in understanding the Fe cycle in the surficial environment. A total of 13 samples of river water were collected from the Mun River to analyze the Fe isotopes and their controlling factors in river water, such as dissolved organic carbon (DOC) and different supply sources. The results showed that dissolved Fe (DFe) concentrations ranged from 21.49 μg/L to 232.34 μg/L in the dry season and ranged from 10.48 μg/L to 135.27 μg/L in the wet season, which might be ascribed to the dilution effect. The δ56Fe of the dry season (−0.34 to 0.57‰, with an average 0.09‰) was lower than that of the wet season (−0.15 to 0.48‰, with an average 0.14‰). Combined with the δ56Fe and DFe/DAl ratios, the end-members of DFe were identified, including rock weathering (high δ56Fe and low DFe/DAl ratio), anthropogenic inputs (high δ56Fe and high DFe/DAl ratio) and groundwater inputs (low δ56Fe and low DFe/DAl ratio). The relationship between δ56Fe and DOC concentrations suggested that the chelation of organic matter with heavy Fe isotopes was one of the important sources of heavy Fe isotopes in river water.
Funder
National Natural Science Foundation of China
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry