Demand-Oriented Train Timetabling Integrated with Passenger Train-Booking Decisions

Author:

Zhou ,Fan ,You ,Deng

Abstract

In recent years, with the global energy shortage and severe environmental deterioration, railway transport has begun to attract great interest as a green transportation mode. One of the vital means to realize social sustainable development is to improve railway transportation systems, in which providing a demand-oriented train timetable with a higher service level is the most viable method. A demand-oriented train timetable problem generally deals with passengers’ train-choice decisions according to the queue principle, but it is not adapted to rail systems, such as China’s, where passengers usually book tickets a few days in advance by telephone or online instead of going to stations. This paper is devoted to modeling and solving the demand-oriented train timetabling problem integrated with passengers’ train-booking decisions. Firstly, a bi-level programming model is formulated for their integrated optimization on a rail network. Its upper-level model is to optimize train arrival and departure times at each visited station with the aim of reducing passengers’ total travel cost, while its lower-level model aims to determine passengers’ train-booking behavior using the user equilibrium theory. Then, a priority-based heuristic algorithm is designed to solve this model. It has two main steps at each iteration: one is to determine the number of passengers booking each train with a given train timetable, and the other is to improve the current train timetable based on the valuable information of passenger train-booking decisions. The performance, convergence, and practicability of the proposed method were analyzed based on the Changsha–Zhuzhou–Xiangtan intercity rail in China. Experimental results show the proposed method can effectively reduce the travel cost for passengers, creating a greater passenger demand for railway travel, which is beneficial to the sustainable development of railway systems and even society.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3