Abstract
This paper considered an actual neighborhood to quantify impacts of the local urban microclimate on energy consumption for an academic building in College Park, USA. Specifically, this study accounted for solar irradiances on building and ground surfaces to evaluate impacts of the local convective heat transfer coefficient (CHTC), infiltration rate, and coefficient of performance (COP) on building cooling systems. Using computational fluid dynamics (CFD) allowed for the calculation of local temperature and velocity values and implementation of the local variables in the building energy simulation (BES) model. The discrepancies among the cases with different CHTCs showed slight influence of CHTCs on sensible load, in which the maximum variations existed 1.95% for sensible cooling load and 3.82% for sensible heating load. The COP analyses indicated windward wall and upstream roof are the best locations for the installation of these cooling systems. This study used adjusted infiltration rate values that take into account the local temperature and velocity. The results indicated the annual cooling and heating energy increased by 2.67% and decreased by 2.18%, respectively.
Funder
National Natural Science Foundation of China
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献