Innovative Processes and Technologies for Nutrient Recovery from Wastes: A Comprehensive Review

Author:

Ahmed MukhtarORCID,Ahmad Shakeel,Fayyaz-ul-Hassan ,Qadir Ghulam,Hayat Rifat,Shaheen Farid Asif,Raza Muhammad AliORCID

Abstract

Waste management is necessary for environmental and economic sustainability, but it depends upon socioeconomic, political, and environmental factors. More countries are shifting toward recycling as compared to landfilling; thus, different researchers have presented the zero waste concept, considering the importance of sustainability. This review was conducted to provide information about different well established and new/emerging technologies which could be used to recover nutrients from wastes and bring zero waste concepts in practical life. Technologies can be broadly divided into the triangle of nutrient accumulation, extraction, and release. Physicochemical mechanisms, plants, and microorganisms (algae and prokaryotic) could be used to accumulate nutrients. Extraction of nutrient is possible through electrodialysis and crystallization while nutrient release can occur via thermochemical and biochemical treatments. Primary nutrients, i.e., nitrogen, phosphorus, and potassium, are used globally and are non-renewable. Augmented upsurges in prices of inorganic fertilizers and required discharge restrictions on nutrients have stimulated technological developments. Thus, well-proven technologies, such as biochar, composting, vermicomposting, composting with biochar, pyrolysis, and new emerging technologies (forward osmosis and electro-dialysis) have potential to recover nutrients from wastes. Therefore, reviewing the present and imminent potential of these technologies for adaptation of nutrient recycling from wastes is of great importance. Since waste management is a significant concern all over the globe and technologies, e.g., landfill, combustion, incineration, pyrolysis, and gasification, are available to manage generated wastes, they have adverse impacts on society and on the environment. Thus, climate-friendly technologies, such as composting, biodegradation, and anaerobic decomposition, with the generation of non-biodegradable wastes need to be adopted to ensure a sustainable future environment. Furthermore, environmental impacts of technology could be quantified by life cycle assessment (LCA). Therefore, LCA could be used to evaluate the performance of different environmentally-friendly technologies in waste management and in the designing of future policies. LCA, in combination with other approaches, may prove helpful in the development of strategies and policies for the selection of dynamic products and processes.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3