An Optimal Decision-Tree Design Strategy and Its Application to Sea Ice Classification from SAR Imagery

Author:

Lohse Johannes,Doulgeris Anthony P.ORCID,Dierking WolfgangORCID

Abstract

We introduce the fully automatic design of a numerically optimized decision-tree algorithm and demonstrate its application to sea ice classification from SAR data. In the decision tree, an initial multi-class classification problem is split up into a sequence of binary problems. Each branch of the tree separates one single class from all other remaining classes, using a class-specific selected feature set. We optimize the order of classification steps and the feature sets by combining classification accuracy and sequential search algorithms, looping over all remaining features in each branch. The proposed strategy can be adapted to different types of classifiers and measures for the class separability. In this study, we use a Bayesian classifier with non-parametric kernel density estimation of the probability density functions. We test our algorithm on simulated data as well as airborne and spaceborne SAR data over sea ice. For the simulated cases, average per-class classification accuracy is improved between 0.5% and 4% compared to traditional all-at-once classification. Classification accuracy for the airborne and spaceborne SAR datasets was improved by 2.5% and 1%, respectively. In all cases, individual classes can show larger improvements up to 8%. Furthermore, the selection of individual feature sets for each single class can provide additional insights into physical interpretation of different features. The improvement in classification results comes at the cost of longer computation time, in particular during the design and training stage. The final choice of the optimal algorithm therefore depends on time constraints and application purpose.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3