Determination of Vegetation Thresholds for Assessing Land Use and Land Use Changes in Cambodia using the Google Earth Engine Cloud-Computing Platform

Author:

Venkatappa ,Sasaki ,Shrestha ,Tripathi ,Ma

Abstract

As more data and technologies become available, it is important that a simple method is developed for the assessment of land use changes because of the global need to understand the potential climate mitigation that could result from a reduction in deforestation and forest degradation in the tropics. Here, we determined the threshold values of vegetation types to classify land use categories in Cambodia through the analysis of phenological behaviors and the development of a robust phenology-based threshold classification (PBTC) method for the mapping and long-term monitoring of land cover changes. We accessed 2199 Landsat collections using Google Earth Engine (GEE) and applied the Enhanced Vegetation Index (EVI) and harmonic regression methods to identify phenological behaviors of land cover categories during the leaf-shedding phenology (LSP) and leaf-flushing phenology (LFS) seasons. We then generated 722 mean phenology EVI profiles for 12 major land cover categories and determined the threshold values for selected land cover categories in the mid-LSP season. The PBTC pixel-based classified map was validated using very high-resolution (VHR) imagery. We obtained a cumulative overall accuracy of more than 88% and a cumulative overall accuracy of the referenced forest cover of almost 85%. These high accuracy values suggest that the very first PBTC map can be useful for estimating the activity data, which are critically needed to assess land use changes and related carbon emissions under the Reducing Emissions from Deforestation and forest Degradation (REDD+) scheme. We found that GEE cloud-computing is an appropriate tool to use to access remote sensing big data at scale and at no cost.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3