Spectral–Spatial Discriminant Feature Learning for Hyperspectral Image Classification

Author:

Dong ,Naghedolfeizi ,Aberra ,Zeng

Abstract

Sparse representation classification (SRC) is being widely applied to target detection in hyperspectral images (HSI). However, due to the problem in HSI that high-dimensional data contain redundant information, SRC methods may fail to achieve high classification performance, even with a large number of spectral bands. Selecting a subset of predictive features in a high-dimensional space is an important and challenging problem for hyperspectral image classification. In this paper, we propose a novel discriminant feature learning (DFL) method, which combines spectral and spatial information into a hypergraph Laplacian. First, a subset of discriminative features is selected, which preserve the spectral structure of data and the inter- and intra-class constraints on labeled training samples. A feature evaluator is obtained by semi-supervised learning with the hypergraph Laplacian. Secondly, the selected features are mapped into a further lower-dimensional eigenspace through a generalized eigendecomposition of the Laplacian matrix. The finally extracted discriminative features are used in a joint sparsity-model algorithm. Experiments conducted with benchmark data sets and different experimental settings show that our proposed method increases classification accuracy and outperforms the state-of-the-art HSI classification methods.

Funder

Army Research Office

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hyperspectral image-aided LiDAR point cloud labeling via spatio-spectral feature representation learning;International Journal of Applied Earth Observation and Geoinformation;2023-06

2. An attention involved network stacked by dual-channel residual block for hyperspectral image classification;Infrared Physics & Technology;2022-05

3. A Triple-Path Spectral–Spatial Network With Interleave-Attention for Hyperspectral Image Classification;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing;2022

4. Hyperspectral target detection based on transform domain adaptive constrained energy minimization;International Journal of Applied Earth Observation and Geoinformation;2021-12

5. Local Constraint-Based Sparse Manifold Hypergraph Learning for Dimensionality Reduction of Hyperspectral Image;IEEE Transactions on Geoscience and Remote Sensing;2021-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3