True-Color Three-Dimensional Imaging and Target Classification Based on Hyperspectral LiDAR

Author:

Chen ,Shi ,Gong ,Sun ,Chen ,Du ,Yang ,Guo ,Zhao

Abstract

True-color three-dimensional (3D) imaging exploits spatial and spectral information and can enable accurate feature extraction and object classification. The existing methods, however, are limited by data collection mechanisms when realizing true-color 3D imaging. We overcome this problem and present a novel true-color 3D imaging method based on a 32-channel hyperspectral LiDAR (HSL) covering a 431–751 nm spectral range. We conducted two experiments, one with nine-color card papers and the other with seven different colored objects. We used the former to investigate the effect of true-color 3D imaging and determine the optimal spectral bands for compositing true-color, and the latter to explore the classification potential based on the true-color feature using polynomial support vector machine (SVM) and Gaussian naive Bayes (NB) classifiers. Since using all bands of HSL will cause color distortions, the optimal spectral band combination for better compositing the true-color were selected by principal component analysis (PCA) and spectral correlation measure (SCM); PCA emphasizes the amount of information in band combinations, while SCM focuses on correlation between bands. The results show that the true-color 3D imaging can be realized based on HSL measurements, and three spectral bands of 466, 546, and 626 nm were determined. Comparing reflectance of the three selected bands, the overall classification accuracy of seven different colored objects was improved by 14.6% and 8.25% based on SVM and NB, respectively, classifiers after converting spectral intensities into true-color information. Overall, this study demonstrated the potential of HSL system in retrieving true-color and facilitating target recognition, and can serve as a guide in developing future three-channel or multi-channel true-color LiDAR.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3