Management Recommendation Generation for Areas Under Forest Restoration Process through Images Obtained by UAV and LiDAR

Author:

Reis Bruna PaolinelliORCID,Martins Sebastião Venâncio,Fernandes Filho Elpídio InácioORCID,Sarcinelli Tathiane SantiORCID,Gleriani José Marinaldo,Marcatti Gustavo EduardoORCID,Leite Helio Garcia,Halassy MelindaORCID

Abstract

Evaluating and monitoring forest areas during a restoration process is indispensable to estimate the success or failure of management intervention and to correct the restoration trajectory through adaptive management. However, the field measurement of several indicators in large areas can be expensive and laborious, and establishing reference values for indicators is difficult. The use of supervised classification techniques of high resolution images, combined with an expert system to generate management recommendations, can be considered promising tools for monitoring and evaluating restoration areas. The objective of the present study was to elaborate an expert system of management recommendation generation for areas under restoration, which were monitored by two different remote sensors: UAV (Unmanned Aerial Vehicle) and LiDAR (Light Detection and Ranging). The study was carried out in areas under restoration with about 54 ha and five years of implementation, owned by Fibria Celulose S.A. (recently acquired by Suzano S.A.), in the southern region of Bahia State, Brazil. We used images from Canon S110 NIR (green, red, near infrared) on UAV and LiDAR data compositions (intensity image, digital surface model, digital terrain model, normalized digital surface model). The monitored restoration indicator entailed land cover separated into three classes: Canopy cover, bare soil and grass cover. The images were classified using the Random Forest (RF) and Maximum Likelihood (ML) algorithms and the area occupied by each land cover classes was calculated. An expert system was developed in ArcGIS to define management recommendations according to the land cover classes, and then we compared the recommendations generated by both algorithms and images. There was a slight difference between the recommendations generated by the different combinations of images and classifiers. The most frequent management recommendation was “weed control + plant seedlings” (34%) for all evaluated methods. The image monitoring methods suggested by this study proved to be efficient, mainly by reducing the time and cost necessary for field monitoring and increasing the accuracy of the generated management recommendations.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference36 articles.

1. The SER Primer on Ecological Restorationhttp://www.ser.org/

2. Gauging policy-driven large-scale vegetation restoration programmes under a changing environment: Their effectiveness and socio-economic relationships

3. New UN Decade on Ecosystem Restoration Offers Unparalleled Opportunity for Job Creation, Food Security and Addressing Climate Changehttps://www.unenvironment.org/news-and-stories/press-release/new-un-decade-ecosystem-restoration-offers-unparalleled-opportunity

4. On the restoration of high diversity forests: 30 years of experience in the Brazilian Atlantic Forest

5. Restoration Success: How Is It Being Measured?

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3