Deep Learning for SAR Image Despeckling

Author:

Lattari Francesco,Gonzalez Leon Borja,Asaro Francesco,Rucci Alessio,Prati Claudio,Matteucci MatteoORCID

Abstract

Speckle filtering is an unavoidable step when dealing with applications that involve amplitude or intensity images acquired by coherent systems, such as Synthetic Aperture Radar (SAR). Speckle is a target-dependent phenomenon; thus, its estimation and reduction require the individuation of specific properties of the image features. Speckle filtering is one of the most prominent topics in the SAR image processing research community, who has first tackled this issue using handcrafted feature-based filters. Even if classical algorithms have slowly and progressively achieved better and better performance, the more recent Convolutional-Neural-Networks (CNNs) have proven to be a promising alternative, in the light of the outstanding capabilities in efficiently learning task-specific filters. Currently, only simplistic CNN architectures have been exploited for the speckle filtering task. While these architectures outperform classical algorithms, they still show some weakness in the texture preservation. In this work, a deep encoder–decoder CNN architecture, focused in the specific context of SAR images, is proposed in order to enhance speckle filtering capabilities alongside texture preservation. This objective has been addressed through the adaptation of the U-Net CNN, which has been modified and optimized accordingly. This architecture allows for the extraction of features at different scales, and it is capable of producing detailed reconstructions through its system of skip connections. In this work, a two-phase learning strategy is adopted, by first pre-training the model on a synthetic dataset and by adapting the learned network to the real SAR image domain through a fast fine-tuning procedure. During the fine-tuning phase, a modified version of the total variation (TV) regularization was introduced to improve the network performance when dealing with real SAR data. Finally, experiments were carried out on simulated and real data to compare the performance of the proposed method with respect to the state-of-the-art methodologies.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 98 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. S3Net: Semi-self-supervised neural network for visibility enhancement of speckled images;Computers and Electrical Engineering;2024-08

2. Different Training Solution for Amplitude SAR Despeckling;IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium;2024-07-07

3. Speckle Reduction in Dual-Polarimetric SAR Images Based on Conditional Diffusion Model;IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium;2024-07-07

4. Multi-Head Transposed Attention Transformer for Sea Ice Segmentation in Sar Imagery;IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium;2024-07-07

5. Qspecklefilter: A Quantum Machine Learning Approach for SAR Speckle Filtering;IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium;2024-07-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3