Nonlinear and Multidelayed Effects of Meteorological Drivers on Human Respiratory Syncytial Virus Infection in Japan

Author:

Wagatsuma Keita12,Koolhof Iain S.3,Saito Reiko1ORCID

Affiliation:

1. Division of International Health (Public Health), Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan

2. Japan Society for the Promotion of Science, Tokyo 102-0083, Japan

3. College of Health and Medicine, School of Medicine, University of Tasmania, Hobart 7000, Australia

Abstract

In this study, we aimed to characterize the nonlinear and multidelayed effects of multiple meteorological drivers on human respiratory syncytial virus (HRSV) infection epidemics in Japan. The prefecture-specific weekly time-series of the number of newly confirmed HRSV infection cases and multiple meteorological variables were collected for 47 Japanese prefectures from 1 January 2014 to 31 December 2019. We combined standard time-series generalized linear models with distributed lag nonlinear models to determine the exposure–lag–response association between the incidence relative risks (IRRs) of HRSV infection and its meteorological drivers. Pooling the 2-week cumulative estimates showed that overall high ambient temperatures (22.7 °C at the 75th percentile compared to 16.3 °C) and high relative humidity (76.4% at the 75th percentile compared to 70.4%) were associated with higher HRSV infection incidence (IRR for ambient temperature 1.068, 95% confidence interval [CI], 1.056–1.079; IRR for relative humidity 1.045, 95% CI, 1.032–1.059). Precipitation revealed a positive association trend, and for wind speed, clear evidence of a negative association was found. Our findings provide a basic picture of the seasonality of HRSV transmission and its nonlinear association with multiple meteorological drivers in the pre-HRSV-vaccination and pre-coronavirus disease 2019 (COVID-19) era in Japan.

Funder

The Grants-in-Aid for Scientific Research (KAKENHI) of the Japan Society for the Promotion of Science

The Community Medical Research Grant of the Niigata City Medical Association

The Tsukada Medical Research Grant

The Japan Initiative for Global Research Network on Infectious Diseases (J-GRID) by the Japan Agency for Medical Research and Development

KAKENHI by the JSPS

The Health and Labor Sciences Research Grants, Ministry of Health, Labor and Welfare, Japan

The Niigata Prefecture Coronavirus Infectious Disease Control Research and Human Resources Development Support Fund

Publisher

MDPI AG

Subject

Virology,Infectious Diseases

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3