Radial Gradient Pressure Effects on Flow Behavior in a Dual Volute Turbocharger Turbine

Author:

Sajedin AzadehORCID,Shojaeefard Mohammad,Khalkhali Abolfazl

Abstract

The pressure gradient in the dual volute radial turbocharger turbines is the primary source of the vortices’ formation in rotor passages. The effects of the upstream non-uniform flow conditions on the development of secondary flows are not well known. In this study, the effect of highly skewed and non-uniform mass flow on the secondary vortices in different admission cases in a dual entry turbine was investigated using CFD modeling. The results agree well with the experiment, and show that increasing the inequality of the pressure between the entries leads to a reduction in the turbine’s performance. Some useful energy dissipates due to mixing the flows of the entries. Isolating the rotor sectors in the tongues region was applied with the purpose of limiting the mixing. Also, the vortices’ behavior in the rotor passages with different surface pressure ratios for the passage sides were investigated for both equal and partial admission. The surface pressure of the airfoil pressure side was more effective on the tip and trailing edge vortex than the suction side, while the leading-edge root vortex did not change by any variation in the surface pressure ratio. The vortices’ center location shifted with the pressure variation, and consequently, by decreasing the pressure level, the center of the tip vorticity turned to the upstream sections, and the leading-edge root vortex center moved closer to the pressure side.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3