Electricity Production from Marine Water by Sulfide-Driven Fuel Cell

Author:

Beschkov Venko,Razkazova-Velkova Elena,Martinov Martin,Stefanov Stefan

Abstract

While there is a universal trend to replace fossil fuels at least partially, renewable fuels seem to impose new solutions. Hydrogen sulfide, typical for closed water ponds such as the Black Sea, seems to offer one namely, a new sulfide-driven fuel cell providing for exchange of OH− anions across the membrane by use of hydrogen sulfide in natural marine water. When tested in batch and continuous operation modes, this solution showed that the initial sulfide concentration needed to achieve results of practical value was within 200 to 300 mg dm−3. The predominating final products of the energy production process were sulfite and sulfate ions. Very low overpotentials and mass transfer resistances were observed. The mass balance and the electrochemical parameters showed about 30% efficiency in sulfate ions as the final product. Efforts should be made to enhance sulfide to sulfate conversion. The observed current and power density were comparable and even better than some of the results so far reported for similar systems. Three types of ion exchange membranes were tested. Comparison of their ion conductivity to literature data shows good performance. At higher initial sulfide concentrations polysulfides and thio-compounds were formed with considerably low current yield.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference33 articles.

1. Hydrochemistry of the Bulgarian Sector of the Black Sea (in Bulgarian);Rozhdestvenskiy,1986

2. A parametric investigation of hydrogen energy potential based on H2S in Black Sea deep waters

3. Alternative hydrogen sulfide energetics in the Black Sea. Part I. State of the art, problems and perspectives (in Russian);Neklyudov;Int. Sci. J. Altern. Energy Ecol. (ISJAEE),2006

4. The exploitation of hydrogen sulfide for hydrogen production in geothermal areas

5. Production of hydrogen and sulfur from hydrogen sulfide assisted by nonthermal plasma

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3