Domestic Cat Sound Classification Using Learned Features from Deep Neural Nets

Author:

Pandeya Yagya Raj,Kim Dongwhoon,Lee Joonwhoan

Abstract

The domestic cat (Feliscatus) is one of the most attractive pets in the world, and it generates mysterious kinds of sound according to its mood and situation. In this paper, we deal with the automatic classification of cat sounds using machine learning. Machine learning approach for the classification requires class labeled data, so our work starts with building a small dataset named CatSound across 10 categories. Along with the original dataset, we increase the amount of data with various audio data augmentation methods to help our classification task. In this study, we use two types of learned features from deep neural networks; one from a pre-trained convolutional neural net (CNN) on music data by transfer learning and the other from unsupervised convolutional deep belief network that is (CDBN) solely trained on a collected set of cat sounds. In addition to conventional GAP, we propose an effective pooling method called FDAP to explore a number of meaningful features. In FDAP, the frequency dimension is roughly divided and then the average pooling is applied in each division. For the classification, we exploited five different machine learning algorithms and an ensemble of them. We compare the classification performances with respect following factors: the amount of data increased by augmentation, the learned features from pre-trained CNN or unsupervised CDBN, conventional GAP or FDAP, and the machine learning algorithms used for the classification. As expected, the proposed FDAP features with larger amount of data increased by augmentation combined with the ensemble approach have produced the best accuracy. Moreover, both learned features from pre-trained CNN and unsupervised CDBN produce good results in the experiment. Therefore, with the combination of all those positive factors, we obtained the best result of 91.13% in accuracy, 0.91 in f1-score, and 0.995 in area under the curve (AUC) score.

Funder

National Research Foundation of Korea (NRF)

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3