UN-YOLOv5s: A UAV-Based Aerial Photography Detection Algorithm

Author:

Guo Junmei1,Liu Xingchen1,Bi Lingyun1,Liu Haiying1,Lou Haitong1

Affiliation:

1. The School of Information and Automation Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China

Abstract

With the progress of science and technology, artificial intelligence is widely used in various disciplines and has produced amazing results. The research of the target detection algorithm has significantly improved the performance and role of unmanned aerial vehicles (UAVs), and plays an irreplaceable role in preventing forest fires, evacuating crowded people, surveying and rescuing explorers. At this stage, the target detection algorithm deployed in UAVs has been applied to production and life, but making the detection accuracy higher and better adaptability is still the motivation for researchers to continue to study. In aerial images, due to the high shooting height, small size, low resolution and few features, it is difficult to be detected by conventional target detection algorithms. In this paper, the UN-YOLOv5s algorithm can solve the difficult problem of small target detection excellently. The more accurate small target detection (MASD) mechanism is used to greatly improve the detection accuracy of small and medium targets, The multi-scale feature fusion (MCF) path is combined to fuse the semantic information and location information of the image to improve the expression ability of the novel model. The new convolution SimAM residual (CSR) module is introduced to make the network more stable and focused. On the VisDrone dataset, the mean average precision (mAP) of UAV necessity you only look once v5s(UN-YOLOv5s) is 8.4% higher than that of the original algorithm. Compared with the same version, YOLOv5l, the mAP is increased by 2.2%, and the Giga Floating-point Operations Per Second (GFLOPs) is reduced by 65.3%. Compared with the same series of YOLOv3, the mAP is increased by 1.8%, and GFLOPs is reduced by 75.8%. Compared with the same series of YOLOv8s, the detection accuracy of the mAP is improved by 1.1%.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3