Fruit Detection and Counting in Apple Orchards Based on Improved Yolov7 and Multi-Object Tracking Methods

Author:

Hu Jing1,Fan Chuang1ORCID,Wang Zhoupu1,Ruan Jinglin1,Wu Suyin1

Affiliation:

1. School of Mathematics and Computer Science, Wuhan Polytechnic University, Wuhan 430024, China

Abstract

With the increasing popularity of online fruit sales, accurately predicting fruit yields has become crucial for optimizing logistics and storage strategies. However, existing manual vision-based systems and sensor methods have proven inadequate for solving the complex problem of fruit yield counting, as they struggle with issues such as crop overlap and variable lighting conditions. Recently CNN-based object detection models have emerged as a promising solution in the field of computer vision, but their effectiveness is limited in agricultural scenarios due to challenges such as occlusion and dissimilarity among the same fruits. To address this issue, we propose a novel variant model that combines the self-attentive mechanism of Vision Transform, a non-CNN network architecture, with Yolov7, a state-of-the-art object detection model. Our model utilizes two attention mechanisms, CBAM and CA, and is trained and tested on a dataset of apple images. In order to enable fruit counting across video frames in complex environments, we incorporate two multi-objective tracking methods based on Kalman filtering and motion trajectory prediction, namely SORT, and Cascade-SORT. Our results show that the Yolov7-CA model achieved a 91.3% mAP and 0.85 F1 score, representing a 4% improvement in mAP and 0.02 improvement in F1 score compared to using Yolov7 alone. Furthermore, three multi-object tracking methods demonstrated a significant improvement in MAE for inter-frame counting across all three test videos, with an 0.642 improvement over using yolov7 alone achieved using our multi-object tracking method. These findings suggest that our proposed model has the potential to improve fruit yield assessment methods and could have implications for decision-making in the fruit industry.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3