A New Nonlinear Spatial Compliance Model Method for Flexure Leaf Springs with Large Width-to-Length Ratio under Large Deformation

Author:

Zhang Yin,Wu Jianwei,Pan Jiansheng,Yan Zhenzhuo,Tan Jiubin

Abstract

Flexure leaf spring (FLS) with large deformation is the basic unit of compliant mechanisms with large stroke. The stiffness along the non-working directions of FLSs with large width-to-length ratio (w/L) is high. The motion stability of the compliant mechanism based on this type of FLS is high. When this type of FLS is loaded along the width direction, the shear deformation needs to be characterized. Nevertheless, currently available compliance modeling methods for FLS are established based on Euler–Bernoulli beam model and cannot be used to characterize shear models. Therefore, these methods are not applicable in this case. In this paper, a new six-DOF compliance model for FLSs with large w/L is established under large deformation. The shear deformation along the width direction model is characterized based on the Timoshenko beam theory. The new constraint model and differential equations are established to obtain a high-precision compliance model expression for this type of FLS. The effects of structural parameters on the compliance of the FLS are analyzed. Finally, the accuracy of the model is verified both experimentally and by finite element simulation. The relative error between theoretical result and experiment result is less than 5%.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3